			DATE:
	XI-SCI : Chemistry Chemical Equilibrium,		TIME: 1 hour 30 minutes
Quality Checkers			MARKS: 25
Only way to fulfill your dreams	S	EAT NO:	
Note:-			

- - 1. All Questions are compulsory.
 - 2. Numbers on the right indicate full marks.

Section A

Q.1 Select and write the correct answer.

1. The relation between pH and pOH is

A) pH/pOH = 14B) 14 - pH = pOHC) $pH \times pOH = 14$ D) 14/pOH = pH

2. The solubility product of CaF₂ is

A)
$$[Ca^{2+}][2F^{-}]$$
 B) $[Ca^{2+}][2F^{-}]^{2}$
C) $[Ca^{2+}][F^{-}]^{2}$ D) $[Ca^{2+}][F^{-}]$

The relation between K_c and K_p for the reaction $A_{(g)} + B_{(g)} \rightleftharpoons C_{(g)} + D_{(g)}$ is 3.

A)
$$K_{c} = 1/K_{p}$$
 B) $K_{p} = K_{c}^{2}$
C) $K_{c} = \frac{1}{\sqrt{K_{P}}}$ D) $\frac{K_{p}}{K_{c}} = 1$

4. pH of a solution is 4. Its [H⁺] is A) 10⁻² M в) 1/10⁴ М C) 10⁻⁶ M D) 10⁴ M

Q.2 Answer the following.

- 1. Define the Term: Reversible reaction.
- 2. Write an expression for equilibrium constant with respect to concentration.
- 3. Write the statement of Le-Chatelier's principle.

Section B **Attempt any Four**

- Q.3 Hydrogen and lodine vapours are taken in a closed container. Write the reaction to depict the (2) same and answer the following :
 - 1. At first, there is increase in violet colour. Why?
 - 2. After certain time the intensity of violet colour stops give reason.
- The value of K _c for the dissociation reaction $H_{2(g)} \rightleftharpoons 2 H_{(g)}$ is 1.2 × 10⁻⁴² at 500 K. Does the ⁽²⁾ Q.4 equilibrium mixture contain mainly Hydrogen molecules or Hydrogen atoms?

(3)

(4)

Q.5 (1) If NH₃ is added to the equilibrium system, in which direction will the equilibrium shift to (2) consume added NH₃ to reduce the effect of stress?

(2) In this process, out of the reactions (reverse and forward reaction), which reaction will occur to a greater extent?

(3) What will be the effect on yield of NH_3 ?

Q.6 Cosider the following reaction and answer the following questions : (2)
$$N_2O_4(g) \leftrightarrow 2NO_2(g)$$

- (1) Write the relation between rate of reactions and number of moles.
- (2) Effect of pressure on equilibrium

Q.7 Identify homogenous and heterogeneous equilibrium from the following reactions. (2)

(1) $2 \operatorname{HI}_{(g)} \longleftrightarrow \operatorname{H}_{2(g)}^{+} \operatorname{I}_{2(g)}^{-}$ (2) $\operatorname{H}_{2}O_{(l)} \longleftrightarrow \operatorname{H}_{2}O_{(g)}^{-}$

(3)
$$N_{2(g)} + 3H_{2(g)} \longleftrightarrow 2 NH_{3(g)}$$
 (4) $C_2H_5OH_{(l)} \longleftrightarrow C_2H_5OH_{(g)}$

Q.8 Write expressions of K_c for following chemical reactions :

(1) $2 \operatorname{SO}_{2(g)} + \operatorname{O}_{2(g)} \longrightarrow 2 \operatorname{SO}_{3(g)}$ (2) $\operatorname{N}_2\operatorname{O}_{4(g)} \longrightarrow 2 \operatorname{NO}_{2(g)}$

Section C Attempt any Two

(2)

Q.9	Explain dynamic nature of chemical equilibrium with suitable example.	(3)
Q.10	How does the change of pressure affect the value of equilibrium constant?	(3)
Q.11	Derive mathematically value of K_p for $A_{(g)} + B_{(g)} \rightleftharpoons C_{(g)} + D_{(g)}$	(3)

Section D Attempt any One

- Q.12State and explain Le Chatelier's principle suitably with reference to
(1) Change in temperature(4)(2) Change in concentration
- Q.13 How are the equilibrium constants of the following pairs of equilibrium reactions (4) related?
 - (1) (a) $\operatorname{CO}_{2(g)} + \operatorname{N}_{2(g)} \xleftarrow{K_c} \operatorname{CO}_{(g)} + \operatorname{N}_2\operatorname{O}_{(g)}$ (b) $\operatorname{CO}_{(g)} + \operatorname{N}_2\operatorname{O}_{(g)} \xleftarrow{K'_c} \operatorname{CO}_{2(g)} + \operatorname{N}_{2(g)}$

(2) (a)
$$CO_{(g)} + 2H_{2(g)} \xrightarrow{K_p} CH_3OH_{(g)}$$

(b)
$$\frac{1}{2} \operatorname{CO}_{(g)} + \operatorname{H}_{2(g)} \xleftarrow{\operatorname{K'_p}} \frac{1}{2} \operatorname{CH_3OH}_{(g)}$$